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• Although there is widespread agreement on the need to 
monitor ML algorithms for performance decay, the 
immense complexity of designing a monitoring strategy 
has been relatively under-appreciated.


• Prior works have lacked precision in terms of what the 
target estimand is, how it should be selected, and how 
it should be monitored.


• Contribution of this work: 
• Highlights the wide range of monitoring strategies, 

even in a relatively simple case study. 
• Demonstrates the importance of a systematic 

causally-informed approach to enumerate 
candidate monitoring strategies.


• Merges ideas from causal inference with statistical 
process control to account for performativity, the 
phenomena where an ML algorithm interacts with 
its environment to affect downstream data-
generating mechanisms.


Monitoring: not as easy as you think!

A case study
• Consider a ML algorithm that predicts a patient’s risk of 

unplanned readmission if a follow-up appointment is or 
is not scheduled.  is the algorithm at time .  is the 
binarized prediction.


• The potential biases induced by this ML algorithm are 
numerous and varied, including:


• Suppose the main source of bias is from interfering 
medical interventions (IMI)…
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Each monitoring criterion can be formulated as a 
hypothesis test involving causal estimands. Examples:

• C1: The average PPV/NPVs should be maintained above 

specified thresholds.




• C2: The PPV/NPV for subgroups  should be 
maintained above their respective thresholds.




• C3: The predicted probabilities should be well-calibrated 

with respect to any subgroup (strong calibration), for 
tolerance .


H(1)
0 : Pr(Yt(a) = v | ̂yt(Xt, a) = v, Ft) ≥ ca,v ∀t, a, v
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H(2)
0 : Pr(Yt(a) = v | ̂yt(Xt, a) = v, Xt ∈ Sk, Ft) ≥ ca,v ∀t, a, v, k

δ ≥ 0
H(3)

0 : Pr(Yt(a) = 1 |x) − ̂ft(Xt, a) ≤ δ ∀t, a, x

3x2 Candidate monitoring strategies

Comparison of candidate strategies
Comparison of time to detection 

Comparison of properties/requirements

Each of the three aforementioned criteria can be 
monitored using interventional (I) or observational (O) 
data under suitable identifiability assumptions and certain 
data requirements.


Example: Procedure 1I monitors C1 given interventional data 
using chart statistic 


 


where the propensities are known a priori. Procedure 1O 
monitors C1 given observational data using the same statistic, 
but plugs in estimated propensities.

C1I(t) = max
τ,a,v

t

∑
i=τ (cav −

1{Yi = v, Ai = a}
pi(Ai = a |Xi, Zi, ̂fi) ) 1{ ̂yi(Xi, a) = v}

Study 
Population

Spectrum/referral bias: ML algorithm is only queried 
for a subpopulation of patients.

Conditions 
of use

Off-label use: ML algorithm is queried in settings that 
are not recommended.

Benchmark/
Outcomes

Interfering medical interventions (IMI): Patients are 
treated with differing rates, driven by 
recommendations from the ML algorithm.

3 Candidate monitoring criteria

Example monitoring charts. An alarm is fired when the chart 
statistic exceeds the control limit.
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